Spin on perovskite research advances potential for quantum computing

December 6, 2019

The next generation of information technology could take advantage of spintronics—electronics that use the minuscule magnetic fields emanating from spinning electrons as well as the electric charges of the electrons themselves—for faster, smaller electronic devices that use less energy. Newly published work by scientists at the National Renewable Energy Laboratory and the University of Utah […]



Spintronics “miracle material” put to the test

January 10, 2019

When German mineralogist Gustav Rose stood on the slopes of Russia’s Ural Mountains in 1839 and picked up a piece of a previously undiscovered mineral, he had never heard of transistors or diodes or had any concept of how conventional electronics would become an integral part of our daily lives. He couldn’t have anticipated that […]



Riding the (quantum magnetic) wave

March 8, 2018

Mar. 12, 2018— In 1991, University of Utah chemist Joel Miller developed the first magnet with carbon-based, or organic, components that was stable at room temperature. It was a great advance in magnetics, and he’s been exploring the applications ever since. Twenty-five years later, physicists Christoph Boehme and Valy Vardeny demonstrated a method to convert […]



A new spin on electronics

May 25, 2017

A University of Utah-led team has discovered that a class of “miracle materials” called organic-inorganic hybrid perovskites could be a game changer for future spintronic devices. Spintronics uses the direction of the electron spin — either up or down — to carry information in ones and zeros. A spintronic device can process exponentially more data […]